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Basic Linear Regression in R

Basic Linear Regression in R

Let’s define and plot some artificial data on two variables.

> set.seed(12345)

> x <- rnorm(25)

> y <- sqrt(1/2) * x + sqrt(1/2) * rnorm(25)

> plot(x, y)
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Basic Linear Regression in R

Basic Linear Regression in R

We want to predict y from x using least squares linear regression.

We seek to fit a model of the form

yi = β0 + β1xi + ei = ŷi + ei

while minimizing the sum of squared errors in the “up-down” plot
direction.

We fit such a model in R by creating a “fit object” and examining its
contents. We see that the formula for ŷi is a straight line with slope β1
and intercept β0.
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Basic Linear Regression in R

Basic Linear Regression in R

We start by creating the model with a model specification formula. This
formula corresponds to the model stated on the previous slide in a specific
way:

1 Instead of an equal sign, a “∼”is used.

2 The coefficients themselves are not listed, only the predictor variables.

3 The error term is not listed

4 The intercept term generally does not need to be listed, but can be
listed with a “1”.

So the model on the previous page is translated as y ~ x.
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Basic Linear Regression in R

Basic Linear Regression in R

We create the fit object as follows.

> fit.1 <- lm(y ~ x)

Once we have created the fit object, we can examine its contents.

> summary(fit.1)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-1.846 -0.669 0.213 0.508 1.233

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.255 0.175 1.45 0.15971

x 0.811 0.189 4.28 0.00028 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.877 on 23 degrees of freedom

Multiple R-squared: 0.444, Adjusted R-squared: 0.419

F-statistic: 18.3 on 1 and 23 DF, p-value: 0.000279
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Basic Linear Regression in R

Basic Linear Regression in R

We see the printed coefficients for the intercept and for x .

There are statistical t tests for each coefficient. These are tests of the null
hypothesis that the coefficient is zero.

There is also a test of the hypothesis that the squared multiple correlation
(the square of the correlation between ŷ and y) is zero.

Standard errors are also printed, so you can compute confidence intervals.
(How would you do that quickly “in your head?” (C.P.)

The intercept is not significantly different from zero. Does that surprise
you? (C.P.)

The squared correlation is .4435. What is the correlation in the
population? (C.P.)
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Basic Linear Regression in R

Basic Linear Regression in R

If we want, we can, in the case of simple bivariate regression, add a
regression line to the plot automatically using the abline function.

> plot(x, y)

> abline(fit.1, col = "red")
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Assumptions of the Simple Linear Regression Model

Assumptions of the Simple Linear Regression Model

The bivariate normal distribution is a bivariate continuous distribution
characterized by the fact that any linear combination of the two variables
is normal, and all conditional distributions of one variable for a given value
of the other are normal, with constant variance. (See lecture notes on
Conditional Distributions and the Bivariate Normal Distribution).

Consequences of a bivariate normal model for two variables Y and X
include:

1 The conditional distribution of Y given X is normal

2 The conditional distribution of X given Y is normal

3 The conditional means for Y given X follow the linear regression line
for predicting Y from X .

4 The conditional means for X given Y follow the linear regression line
for predicting X from Y .

5 The conditional variance for Y given X is constant and is given by
(1 − ρ2Y ,X )σ2Y , and the conditional variance for X given Y is constant

and is given by (1 − ρ2Y ,X )σ2X .

The general linear regression model in actual use is not a bivariate normal
model.

It does not assume that the independent variable X is a random variable
at all.
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Assumptions of the Simple Linear Regression Model

Assumptions of the Simple Linear Regression Model

The standard simple linear regression model assumes only that the
dependent (criterion) variable is a random variable.

The predictor variable (or variables) is not assumed to be a random
variable.

Rather the X values are treated as observed constants.

However, the conditional mean of Y given X still follows a linear
regression rule, the conditional variance of Y given X is still assumed to
be constant, and, in the classic cases, the conditional distribution of Y
given X is still assumed to be normal.
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Assumptions of the Simple Linear Regression Model Examining Residuals

Assumptions of the Simple Linear Regression Model
Examining Residuals

Examination of residuals is a key technique for checking model
assumptions in linear regression.

A correct model should show a “null plot” (essentially random) of
residuals versus predicted scores.

But many other patterns can occur, and are symptomatic of model misfit
or violation of model assumptions.

The next slide (Weisberg Figure 8.2) shows some typical patterns.
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Assumptions of the Simple Linear Regression Model Examining Residuals

Assumptions of the Simple Linear Regression Model
Examining Residuals
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FIG. 8.2 Residual plots: (a) null plot; (b) right-opening megaphone; (c) left-opening megaphone; (d)
double outward box; (e)–(f) nonlinearity; (g)–(h) combinations of nonlinearity and nonconstant variance
function.

a null plot that indicates no problems with the fitted model. From Figures 8.2b–d, in
simple regression, we would infer nonconstant variance as a function of the quantity
plotted on the horizontal axis. The curvature apparent in Figures 8.2e–h suggests
an incorrectly specified mean function. Figures 8.2g–h suggest both curvature and
nonconstant variance.

In models with many terms, we cannot necessarily associate shapes in a residual
plot with a particular problem with the assumptions. For example, Figure 8.3 shows
a residual plot for the fit of the mean function E(Y |X = x) = β0 + β1x1 + β2x2
for the artificial data given in the file caution.txt from Cook and Weisberg
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Assumptions of the Simple Linear Regression Model Examining Residuals

Assumptions of the Simple Linear Regression Model
Examining Residuals

Plotting the residuals is straightforward. We can see here that there is no
noticeable departure from a null plot.

> plot(fitted(fit.1), residuals(fit.1))

> abline(h = 0, col = "red", lty = 2, lwd = 2)
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Multiple Regression in R

Multiple Regression in R

If we have more than one predictor, we have a multiple regression model.
Suppose, for example, we add another predictor w to our artificial data
set. We design this predictor to be completely uncorrelated with the other
predictor and the criterion, so this predictor is, in the population, of no
value. Now our model becomes

yi = β0 + β1xi + β2wi + ei

> w <- rnorm(25)
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Multiple Regression in R

Multiple Regression in R

How would we set up and fit the model

yi = β0 + β1xi + β2wi + ei

in R?
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Multiple Regression in R

Multiple Regression in R

How would we set up and fit the model

yi = β0 + β1xi + β2wi + ei

in R? That’s right,

> fit.2 <- lm(y ~ x + w)
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Multiple Regression in R

Multiple Regression in R

> summary(fit.2)

Call:

lm(formula = y ~ x + w)

Residuals:

Min 1Q Median 3Q Max

-1.847 -0.669 0.220 0.511 1.230

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.25404 0.18183 1.40 0.17631

x 0.81273 0.20213 4.02 0.00057 ***

w 0.00437 0.15224 0.03 0.97738

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.897 on 22 degrees of freedom

Multiple R-squared: 0.444,Adjusted R-squared: 0.393

F-statistic: 8.77 on 2 and 22 DF, p-value: 0.00158
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Nested Models

Nested Models
Introduction

The situation we examined in the previous sections is a simple example of
a sequence of nested models. One model is nested within another if it is a
special case of the other in which some model coefficients are constrained
to be zero. The model with only x as a predictor is a special case of the
model with x and w as predictors, with the coefficient β2 constrained to
be zero.

James H. Steiger (Vanderbilt University) Linear Regression 2 19 / 44



Nested Models

Nested Models
Model Comparison

When two models are nested multiple regression models, there is a simple
procedure for comparing them. This procedure tests whether the more
complex model is significantly better than the simpler model. In the
sample, of course, the more complex of two nested models will always fit
at least as well as the less complex model.
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Nested Models

Nested Models
Partial F -Tests: A General Approach

Suppose Model A includes Model B as a special case. That is, Model B is
a special case of Model A where some terms have coefficients of zero.
Then Model B is nested within Model A. If we define SSa to be the sum of
squared residuals for Model A, SSb the sum of squared residuals for Model
B. Since Model B is a special case of Model A, model A is more complex
so SSb will always be as least as large as SSa. We define dfa to be n − pa,
where pa is the number of terms in Model A including the intercept, and
correspondingly dfb = n − pb. Then, to compare Model B against Model
A, we compute the partial F−statistic as follows.

Fdfa−dfb,dfa =
MScomparison

MSres
=

(SSb − SSa)/(pa − pb)

SSa/dfa
(1)
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Nested Models

Nested Models
Partial F -Tests: A General Approach

R will perform the partial F -test automatically, using the anova command.

> anova(fit.1, fit.2)

Analysis of Variance Table

Model 1: y ~ x

Model 2: y ~ x + w

Res.Df RSS Df Sum of Sq F Pr(>F)

1 23 17.7

2 22 17.7 1 0.000661 0 0.98

Note that the p value for the model difference test is the same as the p
value for the t-test of the significance of the coefficient for w shown
previously.
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Nested Models

Nested Models
Partial F -Tests: A General Approach

What happens if we call the anova command with just a single model?

> anova(fit.1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 14.1 14.10 18.3 0.00028 ***

Residuals 23 17.7 0.77

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the p-value for this test is the same as the p-value for the
overall test of zero squared multiple correlation shown in the output
summary for fit.1. What is going on?
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Nested Models

Nested Models
Partial F -Tests: A General Approach

It turns out, if you call the anova command with a single fit object, it
startes by comparing the first non-intercept term in the model against a
baseline model with no predictors (i.e., just an intercept). If there is a
second predictor, it compares the model with both predictors against the
model with just one predictor. It produces this sequence of comparisons
automatically. To demonstrate, let’s fit a model with just an intercept.

> fit.0 <- lm(y ~ 1)

Recall that the 1 in the model formula stands for the intercept. No let’s
perform a partial F -test comparing fit.0 with fit.1.
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Nested Models

Nested Models
Partial F -Tests: A General Approach

Here we go.

> anova(fit.0, fit.1)

Analysis of Variance Table

Model 1: y ~ 1

Model 2: y ~ x

Res.Df RSS Df Sum of Sq F Pr(>F)

1 24 31.8

2 23 17.7 1 14.1 18.3 0.00028 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that we get exactly the same result for the model comparison as we
got when we ran anova on just the fit.1 object.
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Diagnostic Plots for Multiple Regression

Residual Plots for Multiple Regression

If you have the ALR4 library loaded, you can construct several residual
plots at once with a single command. The function also prints results from
Tukey’s test for nonadditivity. A significant result indicates a departure
from a null residual plot. In this case, none of the tests is significant.
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Diagnostic Plots for Multiple Regression

Nested Models
Partial F -Tests: A General Approach

> library(alr4)

> residualPlots(fit.2)
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Test stat Pr(>|t|)

x -1.167 0.256

w 0.184 0.856

Tukey test -1.164 0.244
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Diagnostic Plots for Multiple Regression

The Scatterplot Matrix
The scatterplot matrix presents several scatterplots in an array. It uses the
pairs command in its rudimentary form, as shown below. If you load the
car library and use the scatterplotMatrix command, you can get much
more detailed information, as shown on the next slide.

> pairs(cbind(y, x, w))
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Diagnostic Plots for Multiple Regression

The Scatterplot Matrix
This plot includes linear and non-parametric fits to the data, as well as
giving density plots on the diagonals. These plots are rough, because of
the small sample size.

> scatterplotMatrix(cbind(y, x, w))
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Fitting Regression Models

Fitting Regression Models

In an earlier lecture, we saw formulas for the slope and intercept of the
best-fitting linear regression line relating two variables Y and X . Let’s
load in some artificial data and review those formulas. The data can be
downloaded from a file called regression.data.txt. There are 3 variables in
the file, which represents scores on Math and Strength for 100 sixth grade
boys and 100 eighth grade boys. The Grade variable is coded 0 for sixth
graders and 1 for eighth graders.

> data <- read.csv("http://www.statpower.net/data/regression.data.csv")

> attach(data)
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Fitting Regression Models

Fitting Regression Models
If we plot all the data together, we get a scatterplot like this:

> plot(Strength, Math)
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Fitting Regression Models

Fitting Regression Models

In the earlier lecture, we saw that the regression slope and intercept for
the best fitting straight line Ŷ = β1X + β0 can be estimated as

β̂1 = ryxsy/sx

β̂0 = Y • − β1x•

We can compute the values easily for predicting Math from Strength as

> beta.hat.1 <- cor(Math, Strength) * sd(Math)/sd(Strength)

> beta.hat.0 <- mean(Math) - beta.hat.1 * mean(Strength)

> beta.hat.1

[1] 0.2568

> beta.hat.0

[1] 79.26
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Fitting Regression Models

Fitting Regression Models

We can fit the model with R, of course.

> model.1 <- lm(Math ~ 1 + Strength)

The call to lm included a model specification. The “1” stands for the
intercept term. All variable names are included as predictors. So, the
above function call fits the linear model

Math = β0 + β1Strength + e.
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Fitting Regression Models

Fitting Regression Models

To see the numerical results of the model fit, you can use the function
summary on the model fit object.

> summary(model.1)

Call:

lm(formula = Math ~ 1 + Strength)

Residuals:

Min 1Q Median 3Q Max

-48.44 -10.60 0.07 9.79 42.77

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 79.255 7.010 11.31 < 2e-16 ***

Strength 0.257 0.065 3.95 0.00011 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.7 on 198 degrees of freedom

Multiple R-squared: 0.073,Adjusted R-squared: 0.0684

F-statistic: 15.6 on 1 and 198 DF, p-value: 0.000109

Notice that, in this case, both β0 (the intercept) and β1 (the coefficient of
Strength) are statistically significant, having p-values less than .001.
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Fitting Regression Models

Fitting Regression Models

To plot the regression line, you can use the abline function on the linear
model object. I chose to plot a dotted red line.

James H. Steiger (Vanderbilt University) Linear Regression 2 35 / 44



Fitting Regression Models

Fitting Regression Models
> plot(Strength, Math)

> abline(model.1, col = "red", lty = 2, lwd = 2)
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The Multiple Regression Model with a Binary Predictor

The Multiple Regression Model

The multiple regression model includes additional terms besides the single
predictor in the linear regression model. As a simple example, consider the
model

Y = β0 + β1X1 + β2X2 + e (2)

As we saw before, it is easy to fit this model using the lm function. Below,
we fit the model predicting Math from Strength and Grade. Multiple R2 is
the square of the correlation between the predicted scores and the
criterion. With only one predictor, it is equal to the squared correlation
between the predictor and the criterion. Note that, with Grade in the
equation, the R2 value increased to .20, while coefficient for Strength is no
longer significant. On the other hand, the coefficient for Grade is highly
significant.
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The Multiple Regression Model with a Binary Predictor

The Multiple Regression Model

How should we interpret these results?

> model.2 <- lm(Math ~ 1 + Strength + Grade)

> summary(model.2)

Call:

lm(formula = Math ~ 1 + Strength + Grade)

Residuals:

Min 1Q Median 3Q Max

-44.23 -10.16 0.26 10.00 37.25

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 91.2182 6.8697 13.28 < 2e-16 ***

Strength 0.0832 0.0680 1.22 0.22

Grade 13.0328 2.3296 5.59 7.3e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.7 on 197 degrees of freedom

Multiple R-squared: 0.2,Adjusted R-squared: 0.192

F-statistic: 24.6 on 2 and 197 DF, p-value: 2.81e-10
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The Multiple Regression Model with a Binary Predictor

The Multiple Regression Model

In this case, one of our predictors, Strength, is continuous, while the other,
Grade, is categorical (binary) and is scored 0-1. This has an important
implication. Because Grade is categorical 0-1, for 6th graders, the model
becomes

Y = β0 + β1Strength + e (3)

For 8th graders, the equation becomes

Y = (β0 + β2) + β1Strength + e (4)

In other words, this model, in effect, simultaneously fits two regression
models, with different intercepts but the same slope, to the Strength-Math
data. The 6th graders have an intercept of β0 and a slope of β1, while the
8th graders have an intercept of β0 + β2, and a slope of β1. So, a test
that β2 = 0 is also a test of equal intercepts (given equal slopes). Most
textbooks begin the discussion of multiple regression with two continuous
predictors. This example helps emphasize that multiple linear regression
modeling offers “more than meets the eye” in analyzing data.
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The Multiple Regression Model with a Binary Predictor

The Multiple Regression Model
Separate Intercepts, Same Slopes

Here is a picture of the data with the two separate regression lines

> plot(Strength[1:100], Math[1:100], col = "red", xlim = c(60, 160), ylim = c(60,

+ 160), xlab = "Strength", ylab = "Math")

> points(Strength[101:200], Math[101:200], col = "blue")

> beta <- coef(model.2)

> abline(beta[1], beta[2], col = "red", lty = 2)

> abline(beta[1] + beta[3], beta[2], col = "blue", lty = 2)
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The Multiple Regression Model with a Binary Predictor

The Multiple Regression Model

Notice that the preceding model assumed, implicitly, that there is no
difference in the slopes of the regression lines for 6th and 8th graders. Can
we fit a model that allows different slopes and different intercepts for the
two grades?
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Multiple Regression with Interactions

The Multiple Regression Model with Interactions

Suppose we fit the following model to our Strength-Math data:

Y = β0 + β1X1 + β2X2 + β3X1X2 + e (5)

For the special case where X2 is a binary variable coded 0-1, 6th graders
have X2 = 0, and so the model becomes

Y = β0 + β1X1 + e (6)

For 8th graders with X2 = 1, we get

Y = β0 + β1X1 + β2 + β3X1 + e

= (β0 + β2) + (β1 + β3)X1 + e

Note that this is a model that specifies different slopes and intercepts for
6th and 8th graders. The 6th graders have a slope of β1 and and intercept
of β0, while the 8th graders have a slope of β1 + β3 and an intercept of
β0 + β2. A test that β2 = 0 corresponds to a test of equal intercepts,
while a test that β3 = 0 corresponds to a test of equal slopes.
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Multiple Regression with Interactions

The Multiple Regression Model with Interactions

Here is how you specify this model in R. Scanning the results, notice now
that the only significant term is the intercept. It now appears that the
slope is not significantly different from zero for 6th graders, nor is there a
significant difference in the slope between 6th and 8th graders. Note that
the sizeable difference in intercepts between the grades is no longer
statistically significant.

> model.3 <- lm(Math ~ Strength + Grade + Strength:Grade)

> summary(model.3)

Call:

lm(formula = Math ~ Strength + Grade + Strength:Grade)

Residuals:

Min 1Q Median 3Q Max

-44.14 -9.93 0.26 10.20 37.70

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.5608 9.5556 9.37 <2e-16 ***

Strength 0.1000 0.0957 1.04 0.30

Grade 16.6696 14.7243 1.13 0.26

Strength:Grade -0.0341 0.1364 -0.25 0.80

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.7 on 196 degrees of freedom

Multiple R-squared: 0.2,Adjusted R-squared: 0.188

F-statistic: 16.4 on 3 and 196 DF, p-value: 1.56e-09
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Multiple Regression with Interactions

The Multiple Regression Model
Separate Slopes and Intercepts

Here is a picture of the data with the two separate regression lines

> plot(Strength[1:100], Math[1:100], col = "red", xlim = c(60, 160), ylim = c(60,

+ 160), xlab = "Strength", ylab = "Math")

> points(Strength[101:200], Math[101:200], col = "blue")

> beta <- coef(model.3)

> abline(beta[1], beta[2], col = "red", lty = 2)

> abline(beta[1] + beta[3], beta[2] + beta[4], col = "blue", lty = 2)
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